46 resultados para liver cell damage

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several epidemiological and experimental studies has been reported that lutein (LT) presents antioxidant properties. Aim of the present study was to investigate the protective effects of LT against oxidative stress and DNA damage induced by cisplatin (cDDP) in a human derived liver cell line (HepG2). Cell viability and DNA-damage was monitored by MU and comet assays. Moreover, different biochemical parameters related to redox status (glutathione, cytochrome-c and intracellular ROS) were also evaluated. A clear DNA-damage was seen with cDDP (1.0 mu M) treatment. In combination with the carotenoid, reduction of DNA damage was observed after pre- and simultaneous treatment of the cells, but not when the carotenoid was added to the cells after the exposure to cDDP. Exposure of the cells to cDDP also caused significant changes of all biochemical parameters and in co-treatment of the cells with LT, the carotenoid reverted these alterations. The results indicate that cDDP induces pronounced oxidative stress in HepG2 cells that is related to DNA damage and that the supplementation with the antioxidant LT may protect these adverse effects caused by the exposure of the cells to platinum compound, which can be a good predict for chemoprevention. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The liver was among the first organs in which connexin proteins have been identified. Hepatocytes harbor connexin32 and connexin26, while non-parenchymal liver cells typically express connexin43. Connexins give rise to hemichannels, which dock with counterparts on adjacent cells to form gap junctions. Both hemichannels and gap junctions provide pathways for communication, via paracrine signaling or direct intercellular coupling, respectively. Over the years, hepatocellular gap junctions have been shown to regulate a number of liver-specific functions and to drive liver cell growth. In the last few years, it has become clear that connexin hemichannels are involved in liver cell death, particularly in hepatocyte apoptosis. This also holds true for hemichannels composed of pannexin1, a connexin-like protein recently identified in the liver. Moreover, pannexin1 hemichannels are key players in the regulation of hepatic inflammatory processes. The current paper provides a concise overview of the features of connexins, pannexins and their channels in the liver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the physiological responses and rate of perceived exertion in Brazilian jiu-jitsu fighters submitted to a combat simulation were investigated. Venous blood samples and heart rate were taken from twelve male Brazilian jiu-jitsu athletes (27.1+/-2.7 yrs, 75.4+/-8.8 kg, 174.9+/-4.4 cm, 9.2+/-2.4% fat), at rest, after a warm-up (ten minutes), immediately after the fight simulation (seven minutes) and after recovery (fourteen minutes). After the combat the rate of perceived exertion was collected. The combat of the Brazilian jiu-jitsu fighters did not change blood concentrations of glucose, triglycerides, total cholesterol, low density lipoprotein and very low density lipoprotein, ureia and ammonia. However, blood levels of high density lipoprotein were significantly higher post-fight (before: 43.0+/-6.9 mg/dL, after: 45.1+/-8.0 mg/dL) and stayed at high levels during the recovery period (43.6+/-8.1 mg/dL) compared to the rest values (40.0+/-6.6 mg/dL). The fight did not cause changes in the concentrations of the cell damage markers of creatine kinase, aspartate aminotransferase and creatinine. However, blood concentrations of the alanine aminotransferase (before: 16.1+/-7.1 U/L, after: 18.6+/-7.1 U/L) and lactate dehydrogenase (before: 491.5+/-177.6 U/L, after: 542.6+/-141.4 U/L) enzymes were elevated after the fight. Heart rate (before: 122+/-25 bpm, after: 165+/-17 bpm) and lactate (before: 2.5+/-1.2 mmol/L, after: 11.9+/-5.8 mmol/L) increased significantly with the completion of combat. Despite this, the athletes rated the fight as being light or somewhat hard (12+/-2). These results showed that muscle glycogen is not the only substrate used in Brazilian jiu-jitsu fights, since there are indications of activation of the glycolytic, lipolytic and proteolytic pathways. Furthermore, the athletes rated the combats as being light or somewhat hard although muscle damage markers were generated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Introduction Biphasic positive airway pressure (BIVENT) is a partial support mode that employs pressure-controlled, time-cycled ventilation set at two levels of continuous positive airway pressure with unrestricted spontaneous breathing. BIVENT can modulate inspiratory effort by modifying the frequency of controlled breaths. Nevertheless, the optimal amount of inspiratory effort to improve respiratory function while minimizing ventilator-associated lung injury during partial ventilatory assistance has not been determined. Furthermore, it is unclear whether the effects of partial ventilatory support depend on acute lung injury (ALI) etiology. This study aimed to investigate the impact of spontaneous and time-cycled control breaths during BIVENT on the lung and diaphragm in experimental pulmonary (p) and extrapulmonary (exp) ALI. Methods This was a prospective, randomized, controlled experimental study of 60 adult male Wistar rats. Mild ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALIp) or intraperitoneally (ALIexp). After 24 hours, animals were anesthetized and further randomized as follows: (1) pressure-controlled ventilation (PCV) with tidal volume (Vt) = 6 ml/kg, respiratory rate = 100 breaths/min, PEEP = 5 cmH2O, and inspiratory-to-expiratory ratio (I:E) = 1:2; or (2) BIVENT with three spontaneous and time-cycled control breath modes (100, 75, and 50 breaths/min). BIVENT was set with two levels of CPAP (Phigh = 10 cmH2O and Plow = 5 cmH2O). Inspiratory time was kept constant (Thigh = 0.3 s). Results BIVENT was associated with reduced markers of inflammation, apoptosis, fibrogenesis, and epithelial and endothelial cell damage in lung tissue in both ALI models when compared to PCV. The inspiratory effort during spontaneous breaths increased during BIVENT-50 in both ALI models. In ALIp, alveolar collapse was higher in BIVENT-100 than PCV, but decreased during BIVENT-50, and diaphragmatic injury was lower during BIVENT-50 compared to PCV and BIVENT-100. In ALIexp, alveolar collapse during BIVENT-100 and BIVENT-75 was comparable to PCV, while decreasing with BIVENT-50, and diaphragmatic injury increased during BIVENT-50. Conclusions In mild ALI, BIVENT had a lower biological impact on lung tissue compared to PCV. In contrast, the response of atelectasis and diaphragmatic injury to BIVENT differed according to the rate of spontaneous/controlled breaths and ALI etiology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation. J. Cell. Biochem. 113: 174183, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neoplasms in children after organ transplantation are related to the type and intensity of immunosuppression and the donorrecipient serostatus, especially in relation to the EpsteinBarr virus. The patient was a two-yr-old female child with biliary atresia who underwent a liver transplantation from a female cadaver donor. Two adults received kidney transplants from the same donor. Nine months after transplantation, one of the adult recipients developed an urothelial tumor in the kidney graft. Imaging tests were repeated monthly in the liver-transplanted child and revealed no abnormalities. However, one yr and two months after the transplantation, the patient developed episodes of fever. At that time, imaging and liver biopsy showed a clear cell tumor of urothelial origin in the graft and the disease was limited to the liver. The patient underwent liver retransplantation, and she is currently free of tumor recurrence. Although rare, the occurrence of tumors in the post-transplant period from cadaver donors, without previously diagnosed tumors, is one of the many problems encountered in the complex world of organ transplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Populations in the Amazon are exposed to organic mercury via consumption of contaminated foods. These ethnic groups consume a specific plant seed annatto which contains certain carotenoids. The aim of this study was to find out if these compounds (bixin, BIX and norbixin, NOR), protect against DNA-damage caused by the metal. Therefore, rats were treated orally with methylmercury (MeHg) and with the carotenoids under conditions that are relevant to humans. The animals were treated either with MeHg (30 mu g/kg/bw/day), BIX (0.110 mg/kg/bw/day), NOR (0.011.0 mg/kg/bw/day) or combinations of the metal compound and the carotenoids consecutively for 45 days. Subsequently, the glutathione levels (GSH) and the activity of catalase were determined, and DNA-damage was measured in hepatocytes and leukocytes using single cell gel electrophoresis assays. Treatment with the metal alone caused a decrease in the GSH levels (35%) and induced DNA damage, which resulted in increased DNA migration after electrophoresis in liver and blood cells, whereas no effects were seen with the carotenoids alone. When BIX or NOR were given in combination with organic mercury, the intermediate and the highest concentrations of the carotenoids (1.0 and 10.0 mg/kg/bw/day BIX and 0.1 and 1.0 mg/kg/bw/day NOR) protected against DNA-damage. Furthermore, we found with both carotenoids, a moderate increase in the GSH levels in both metal-treated and untreated animals, while the activities of catalase remained unchanged. Our results indicate that consumption of BIX and NOR may protect humans against the adverse health effects caused by exposure to organic mercury. Environ. Mol. Mutagen., 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline-and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J approximate to C57BL/6J approximate to C3H/HeJ < 129S1/SvImJ approximate to CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor alpha (PPAR alpha)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPAR alpha-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.-Tryndyak, V., de Conti, A., Kobets, T., Kutanzi, K., Koturbash, I., Han, T., Fuscoe, J. C., Latendresse, J. R., Melnyk, S., Shymonyak, S., Collins, L., Ross, S. A., Rusyn, I., Beland, F. A., Pogribny, I. P. Interstrain differences in the severity of liver injury induced by a choline-and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J. 26, 4592-4602 (2012). www.fasebj.org

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alcohol and tobacco consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Aldehyde dehydrogenase 2 (ALDH2) and glutathione Stransferase pi 1 (GSTP1) are important enzymes for cellular detoxification and low efficiencies are implicated in cancer. We assessed the potential role of SET protein overexpression, a histone acetylation modulator accumulated in HNSCC, in gene regulation and protein activity of ALDH2 and GSTP1. SET was knocked down in HN13, HN12 and Cal27, and overexpressed in HEK293 cells; ethanol and cisplatin were the chemical agents. Cells with SET overexpression (HEK293/SET, HN13 and HN12) showed lower ALDH2 and GSTP1 mRNA levels and trichostatin A increased them (real-time PCR). Ethanol upregulated GSTP1 and ALDH2 mRNAs, whereas cisplatin upregulated GSTP1 in HEK293 cells. SET-chromatin binding revealed SET interaction with ALDH2 and GSTP1 promoters, specifically via SET NAP domain; ethanol and cisplatin abolished SET binding. ALDH2 and GSTP1 efficiency was assessed by enzymatic and comet assay. A lower ALDH2 activity was associated with greater DNA damage (tail intensity) in HEK293/SET compared with HEK293 cells, whereas HN13/siSET showed ALDH2 activity higher than HN13 cells. HN13/siSET cells showed increased tail intensity. Cisplatin-induced DNA damage response showed negative relationship between SET overexpression and BRCA2 recruitment. SET downregulated repair genes ATM, BRCA1 and CHEK2 and upregulated TP53. Cisplatin-induced cell-cycle arrest occurred in G0/G1 and S in HEK293 cells, whereas HEK293/SET showed G2/M stalling. Overall, cisplatin was more cytotoxic for HN13 than HN13/siSET cells. Our data suggest a role for SET in cellular detoxification, DNA damage response and genome integrity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In mammalian species, profibrogenic cells are activated to become myofibroblasts in response to liver damage. Few studies have examined hepatic myofibroblasts and their role in liver damage in teleosts. The aim of the present study was to investigate the involvement of myofibroblast-like cells in rainbow trout (Oncorhynchus mykiss) with hepatic damage induced by aflatoxin B1 (AFB1). Histopathological and immunohistochemical analyses characterized alterations in the liver stroma during the carcinogenic process. Anti-human a-smoothmuscle actin (SMA) and anti-human desmin primary antibodies were used in immunohistochemistry. Only the anti-SMA reagent labelled cells in trout liver. In the livers of control fish, only smooth muscle in blood vessels and around bile ducts was labelled. In the livers from AFB1-treated fish, SMA-positive cells were present in the stroma surrounding neoplastic lesions and in areas of desmoplastic reaction. These observations indicate that in teleosts, as in mammals, the myofibroblast-like cell is involved in fibrosis associated with liver injury. Chronic liver injury induced in trout by aflatoxin may provide a useful model system for study of the evolution of such mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (PciRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) is produced by various mammalian cells and plays a variety of regulatory roles in normal physiology and in pathological processes. This article provides evidence regarding the participation of NO in UVB-induced skin lesions and in the modulation of skin cell proliferation following UVB skin irradiation. Hairless mice were subjected to UVB irradiation for 3 hours and the skin evaluated immediately, 6 and 24 hours postirradiation. The skin lipid peroxidation, and NO levels evaluated by chemiluminescence and inducible nitric oxide synthase (iNOS) and nitrotyrosine immunolabelling increased significantly 24 hours after irradiation and decreased under the treatment with aminoguanidine (AG). On the other hand, cell proliferation markers, PCNA and VEGF showed a strong labelling index when AG was used. The data indicate that NO mediates, at least in part, the lipid peroxidation and protein nitration and also promotes the down regulation of factors involved in cell proliferation. This work shows that the NO plays an important role in the oxidative stress damage and on modulation of cell proliferation pathways in UVB irradiated skin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous steatotic livers are discarded for transplantation because of their poor tolerance to ischemia-reperfusion (I/R). We examined whether tauroursodeoxycholic acid (TUDCA), a known inhibitor of endoplasmic reticulum (ER) stress, protects steatotic and nonsteatotic liver grafts preserved during 6 h in University of Wisconsin (UW) solution and transplanted. The protective mechanisms of TUDCA were also examined. Neither unfolded protein response (UPR) induction nor ER stress was evidenced in steatotic and nonsteatotic liver grafts after 6 h in UW preservation solution. TUDCA only protected steatotic livers grafts and did so through a mechanism independent of ER stress. It reduced proliferator-activated receptor-gamma(PPAR gamma) and damage. When PPAR gamma was activated, TUDCA did not reduce damage. TUDCA, which inhibited PPAR gamma, and the PPAR gamma antagonist treatment up-regulated toll-like receptor 4 (TLR4), specifically the TIR domain-containing adaptor inducing IFN beta (TRIF) pathway. TLR4 agonist treatment reduced damage in steatotic liver grafts. When TLR4 action was inhibited, PPAR gamma antagonists did not protect steatotic liver grafts. In conclusion, TUDCA reduced PPAR gamma and this in turn up-regulated the TLR4 pathway, thus protecting steatotic liver grafts. TLR4 activating-based strategies could reduce the inherent risk of steatotic liver failure after transplantation.